219 research outputs found

    Developing educational competencies for dissemination and implementation research training programs: An exploratory analysis using card sorts

    Get PDF
    Abstract Background With demand increasing for dissemination and implementation (D&I) training programs in the USA and other countries, more structured, competency-based, and tested curricula are needed to guide training programs. There are many benefits to the use of competencies in practice-based education such as the establishment of rigorous standards as well as providing an additional metrics for development and growth. As the first aim of a D&I training grant, an exploratory study was conducted to establish a new set of D&I competencies to guide training in D&I research. Methods Based upon existing D&I training literature, the leadership team compiled an initial list of competencies. The research team then engaged 16 additional colleagues in the area of D&I science to provide suggestions to the initial list. The competency list was then additionally narrowed to 43 unique competencies following feedback elicited from these D&I researchers. Three hundred additional D&I researchers were then invited via email to complete a card sort in which the list of competencies were sorted into three categories of experience levels. Participants had previous first-hand experience with D&I or knowledge translation training programs in the past. Participants reported their self-identified D&I expertise level as well as the country in which their home institution is located. A mean score was calculated for each competency based on their experience level categorization. From these mean scores, beginner-, intermediate-, and advanced-level tertiles were created for the competencies. Results The card sort request achieved a 41 % response rate (n = 124). The list of 43 competencies was organized into four broad domains and sorted based on their experience level score. Eleven competencies were classified into the “Beginner” category, 27 into “Intermediate,” and 5 into “Advanced.” Conclusions Education and training developers can use this competency list to formalize future trainings in D&I research, create more evidence-informed curricula, and enable overall capacity building and accompanying metrics in the field of D&I training and research.http://deepblue.lib.umich.edu/bitstream/2027.42/113065/1/13012_2015_Article_304.pd

    A Human Recombinant Autoantibody-Based Immunotoxin Specific for the Fetal Acetylcholine Receptor Inhibits Rhabdomyosarcoma Growth In Vitro and in a Murine Transplantation Model

    Get PDF
    Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumor in children and is highly resistant to all forms of treatment currently available once metastasis or relapse has commenced. As it has recently been determined that the acetylcholine receptor (AChR) γ-subunit, which defines the fetal AChR (fAChR) isoform, is almost exclusively expressed in RMS post partum, we recombinantly fused a single chain variable fragment (scFv) derived from a fully human anti-fAChR Fab-fragment to Pseudomonas exotoxin A to generate an anti-fAChR immunotoxin (scFv35-ETA). While scFv35-ETA had no damaging effect on fAChR-negative control cell lines, it killed human embryonic and alveolar RMS cell lines in vitro and delayed RMS development in a murine transplantation model. These results indicate that scFv35-ETA may be a valuable new therapeutic tool as well as a relevant step towards the development of a fully human immunotoxin directed against RMS. Moreover, as approximately 20% of metastatic malignant melanomas (MMs) display rhabdoid features including the expression of fAChR, the immunotoxin we developed may also prove to be of significant use in the treatment of these more common and most often fatal neoplasms

    A Cost-Effective Design for a Neutrino Factory

    Full text link
    There have been active efforts in the U.S., Europe, and Japan on the design of a Neutrino Factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high energy storage ring. In the U.S., a second detailed Feasibility Study (FS2) for a Neutrino Factory was completed in 2001. Since that report was published, new ideas in bunching, cooling and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as Study 2B (ST2B), that should lead to significant cost savings over the FS2 design.Comment: 46 pages, 38 figures; to be submitted to Physical Review Special Topics: Accelerators and Beam

    Simulation Study of the Magnetized Electron Beam

    Get PDF
    Electron cooling of the ion beam plays an important role in electron ion colliders to obtain the required high luminosity. This cooling efficiency can be enhanced by using a magnetized electron beam, where the cooling process occurs inside a solenoid field. This paper compares the predictions of ASTRA and GPT simulations to measurements made using a DC high voltage photogun producing magnetized electron beam, related to beam size and rotation angles as a function of the photogun magnetizing solenoid and other parameters

    Analytic fluid theory of beam spiraling in high-intensity cyclotrons

    Get PDF
    Using a two-dimensional fluid description, we investigate the nonlinear radial-longitudinal dynamics of intense beams in isochronous cyclotrons in the nonrelativistic limit. With a multiscale analysis separating the time scale associated with the betatron motion and the slower time scale associated with space-charge effects, we show that the longitudinal-radial vortex motion can be understood in the frame moving with the charged beam as the nonlinear advection of the beam by the E×B velocity field, where E is the electric field due to the space charge and B is the external magnetic field. This interpretation provides simple explanations for the stability of round beams and for the development of spiral halos in elongated beams. By numerically solving the nonlinear advection equation for the beam density, we find that it is also in quantitative agreement with results obtained in particle-in-cell simulations
    corecore